飞雪团队

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 3036|回复: 0

一文搞懂Zookeeper原理

[复制链接]

5344

主题

5432

帖子

1万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
18354
发表于 2022-2-12 14:43:37 | 显示全部楼层 |阅读模式

<blockquote><strong><span style="color: rgba(0, 0, 0, 1)">一.概述</span></strong></blockquote>
<p>&nbsp;ZooKeeper 是什么?</p>
<ul>
<li>是一个开源的<span style="color: rgba(51, 204, 204, 1)">分布式协调服务</span>。使用分布式系统就无法避免对节点管理的问题(需要实时感知节点的状态、对节点进行统一管理等等),而由于这些问题处理起来可能相对麻烦和提高了系统的复杂性,ZooKeeper作为一个能够<span style="color: rgba(51, 204, 204, 1)">通用</span>解决这些问题的中间件就应运而生了。</li>
<li>从设计模式角度来理解:是一个基于<span style="color: rgba(51, 204, 204, 1)">观察者模式</span>设计的分布式服务管理框架,它负责<span style="color: rgba(51, 204, 204, 1)">存储</span>和<span style="color: rgba(51, 204, 204, 1)">管理</span>大家都关心的数据,一旦这些数据的状态发生变化,Zookeeper 就 将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。</li>
<li>实现原理:zookeeper=<span style="color: rgba(51, 204, 204, 1)">文件系统</span>+<span style="color: rgba(51, 204, 204, 1)">通知机制</span>。</li>
</ul>
<p>Zookeeper的作用(应用场景)?</p>
<ul>
<li><span style="color: rgba(51, 204, 204, 1)">统一配置管理</span>:比如现在有A.yml,B.yml,C.yml配置文件,里面有一些公共的配置,但是如果后期对这些公共的配置进行修改,就需要修改每一个文件,还要重启服务器。比较麻烦,现在将这些公共配置信息放到ZK中,修改ZK的信息,会通知A,B,C配置文件。多方便</li>
<li><span style="color: rgba(51, 204, 204, 1)">统一命名服务</span>:这个的理解其实跟<span style="color: rgba(51, 204, 204, 1)">域名</span>一样,在某一个节点下放一些ip地址,我现在只需要访问ZK的一个Znode节点就可以获取这些ip地址。</li>
<li><span style="color: rgba(51, 204, 204, 1)">同一集群管理</span>:分布式集群中状态的监控和管理,使用Zookeeper来存储。</li>
<li><span style="color: rgba(51, 204, 204, 1)">分布式协调</span>:这个是我们最常用的,比如把多个<span style="color: rgba(51, 204, 204, 1)">服务提供者</span>的信息放在某个节点上,<span style="color: rgba(51, 204, 204, 1)">服务的消费者</span>就可以通过ZK调用。
<ul>
<li><span style="color: rgba(51, 204, 204, 1)">服务节点动态上下线:<span style="color: rgba(0, 0, 0, 1)">如何提供者宕机,就会删除在ZK的节点,然后ZK通知给消费者。</span></span></li>
<li><span style="color: rgba(51, 204, 204, 1)">软负载均衡</span></li>
<li><span style="color: rgba(51, 204, 204, 1)">动态选举Maste</span>r:Zookeeper会每次选举最小编号的作为Master,如果Master挂了,自然对应的Znode节点就会删除。然后让<span style="color: rgba(51, 204, 204, 1)">新的最小编号作为Master</span>,这样就可以实现动态选举的功能了。</li>
</ul>
</li>
<li><span style="color: rgba(51, 204, 204, 1)">分布式锁</span>(后续出文章讲)</li>
</ul>
<blockquote><strong><span style="color: rgba(0, 0, 0, 1)">二.原理</span></strong></blockquote>
<p>之所以能做上述功能,主要是归功于ZK的<span style="color: rgba(51, 204, 204, 1)">文件系统</span>和<span style="color: rgba(51, 204, 204, 1)">通知机制</span>。下面我们来分析这两个机制</p>
<hr>
<p>&nbsp;文件系统:</p>
<p>ZooKeeper的数据结构,跟Unix文件系统非常类似,可以看做是一颗<span style="color: rgba(51, 204, 204, 1)">树</span>,每个节点叫做<span style="color: rgba(51, 204, 204, 1)">Znode</span>。每一个Znode只能存1MB数据。数据只是<span style="color: rgba(51, 204, 204, 1)">配置信息</span>。每一个节点可以通过<span style="color: rgba(51, 204, 204, 1)">路径</span>来标识,结构图如下:</p>
<p><img src="https://img2022.cnblogs.com/blog/2597186/202202/2597186-20220211170746939-2004306213.png" ></p>
<p>&nbsp;Znode节点主要有4中类型:</p>
<ul>
<li><span style="color: rgba(51, 204, 204, 1)">临时目录节点</span>:客户端与Zookeeper断开连接后,该节点被删除</li>
<li><span style="color: rgba(51, 204, 204, 1)">临时顺序编号目录节点</span>:基本特性同临时节点,只是增加了顺序属性,节点名后边会追加一个由父节点维护的自增整型数字。</li>
<li><span style="color: rgba(51, 204, 204, 1)">持久化目录节点</span>:客户端与Zookeeper断开连接后,该节点依旧存在</li>
<li><span style="color: rgba(51, 204, 204, 1)">持久化顺序编号目录节点</span>:基本特性同持久节点,只是增加了顺序属性,节点名后边会追加一个由父节点维护的自增整型数字。</li>
</ul>
<hr>
<p>&nbsp;通知机制 (监听机制)</p>
<p>Zookeeper可以提供分布式数据的<span style="color: rgba(51, 204, 204, 1)">发布/订阅</span>功能,依赖的就是Wather监听机制。</p>
<p>客户端可以向服务端<span style="color: rgba(51, 204, 204, 1)">注册</span>Wather监听,服务端的指定事件<span style="color: rgba(51, 204, 204, 1)">触发</span>之后,就会向客户端发送一个事件<span style="color: rgba(51, 204, 204, 1)">通知</span>。具体步如下:</p>
<p><img src="https://img2022.cnblogs.com/blog/2597186/202202/2597186-20220211172333942-1239203073.png" ></p>
<ol>
<li>客户端向服务端注册Wather监听</li>
<li>保存Wather对象到客户端本地的WatherManager中</li>
<li>服务端Wather事件触发后,客户端收到服务端通知,从WatherManager(watcher管理器)中取出对应Wather对象执行回调逻辑</li>
</ol>
<p>&nbsp;主要监听2方面内容:</p>
<ul class="list-paddingleft-2">
<li>
<p>监听Znode节点的<span style="color: rgba(51, 204, 204, 1)">数据变化:<span style="color: rgba(0, 0, 0, 1)">就是那个节点信息更新了。</span></span></p>
</li>
<li>
<p>监听子节点的<span style="color: rgba(51, 204, 204, 1)">增减变化<span style="color: rgba(0, 0, 0, 1)">:就是增加了一个Znode或者删除了一个Znode。</span></span></p>
</li>
</ul>
<p><span style="color: rgba(0, 0, 0, 1)">几个特性:</span></p>
<ul>
<li>一次性:一旦一个Wather触发之后,Zookeeper就会将它从存储中移除</li>
<li>客户端串行:客户端的Wather回调处理是串行同步的过程,不要因为一个Wather的逻辑阻塞整个客户端</li>
<li>轻量:Wather通知的单位是WathedEvent,只<span style="color: rgba(51, 204, 204, 1)">包含通知状态、事件类型和节点路径,不包含具体的事件内容</span>,具体的时间内容需要客户端主动去重新获取数据</li>
</ul>
<blockquote><strong><span style="color: rgba(0, 0, 0, 1)">三.ZK集群(相关概念)</span></strong></blockquote>
<p><img src="https://img2022.cnblogs.com/blog/2597186/202202/2597186-20220211182203890-1695256509.png" ></p>
<ul>
<li>Leader:负责写数据。(写数据都有事务)</li>
<li>Follower:负责读数据,节点的<span style="color: rgba(51, 204, 204, 1)">选举</span>和<span style="color: rgba(51, 204, 204, 1)">过半写成功<span style="color: rgba(0, 0, 0, 1)">。(读数据没有事务)</span><strong><br></strong></span></li>
<li><span style="color: rgba(51, 204, 204, 1)"><span style="color: rgba(0, 0, 0, 1)">Observer:只负责读。</span></span></li>

</ul>
<hr>
<p>从上面的角色种,我们可以总结ZK节点的工作状态(服务状态)</p>
<ul>
<li>LOOKING:寻 找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。</li>
<li>FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。</li>
<li>LEADING:领导者状态。表明当前服务器角色是 Leader。</li>
<li>OBSERVING:观察者状态。表明当前服务器角色是 Observer。</li>

</ul>
<hr>
<p>其他概念:</p>
<ul>
<li>zxid:<span style="color: rgba(51, 204, 204, 1)">全局事务ID</span>,分为两部分:
<ul>
<li>纪元(epoch)部分:epoch代表当前集群所属的哪个leader,leader的选举就类似一个朝代的更替,你前朝的剑不能斩本朝的官,用epoch代表当前命令的有效性。</li>
<li>计数器(counter)部分,是一个<span style="color: rgba(51, 204, 204, 1)">全局有序</span>的数字,是一个递增的数字。</li>


</ul>


</li>


</ul>
<hr>
<p>写数据原理:</p>
<p><img src="https://img2022.cnblogs.com/blog/2597186/202202/2597186-20220211214106019-937037786.png" ></p>
<p><img src="https://img2022.cnblogs.com/blog/2597186/202202/2597186-20220211214136079-1875911582.png" ></p>
<ul>
<li>写给leader,leader再通知其他节点 </li>
<li>写给follower,follower没有写的权限,交给leader写,leader再通知。 </li>
<li><span style="color: rgba(51, 204, 204, 1)">半数机制</span>:比如上图,zookeeper在通知其他节点写的时候,达到半数就通知客户端写完成。 不需要全部写完成。所以集群的数量一般是奇数。</li>


</ul>
<blockquote><strong><span style="color: rgba(0, 0, 0, 1)">三.ZK集群(原理)</span></strong></blockquote>
<p>&nbsp;上面我们知道集群的基本概念,那么也会引出很多问题:ZK怎么保证数据一致性?Leader宕机了如何进行选举?选举后数据如何同步?</p>
<hr>
<p>&nbsp;ZK怎么保证数据一致性?</p>
<p>由于ZK只有Leader节点可以写入数据,如果是其他节点收到写入数据的请求,则会将之转发给Leader节点。ZK通过<span style="color: rgba(51, 204, 204, 1)">ZAB协议</span>来实现数据的最终顺序一致性,他是一个类似2PC两阶段提交的过程。ZAB有2种模式:<span style="color: rgba(51, 204, 204, 1)">消息广播</span>,<span style="color: rgba(51, 204, 204, 1)">崩溃恢复</span>(选举)。</p>
<p>&nbsp;一般我们正常是消息广播:</p>
<p><img src="https://img2022.cnblogs.com/blog/2597186/202202/2597186-20220211205808867-321051219.png" ></p>
<ul>
<li>第一阶段:<span style="color: rgba(51, 204, 204, 1)">广播事务阶段</span>:对应图上的1,2
<ul>
<li>Leader收到请求之后,将它转换为一个proposal提议,并且为每个提议分配一个事务ID:zxid,然后把提议放入到一个FIFO的队列中,按照FIFO的策略发送给所有的Follower。</li>
<li>Follower收到提议之后,以事务日志的形式写入到本地磁盘中,写入成功后返回ACK给Leader</li>






</ul>






</li>
<li>第二阶段:<span style="color: rgba(51, 204, 204, 1)">广播提交操作</span>:对应图上的3
<ul>
<li>Leader在收到超过半数的Follower的ACK之后,即可认为数据写入成功,就会发送commit命令给Follower告诉他们可以提交proposal了。</li>






</ul>






</li>






</ul>
<hr>
<p>Leader宕机了如何进行选举?</p>
<p>这就得使用ZAB的第二种模式,崩溃恢复模式:</p>
<p><img src="https://img2022.cnblogs.com/blog/2597186/202202/2597186-20220211211246367-43062481.png" ></p>
<p><img src="https://img2022.cnblogs.com/blog/2597186/202202/2597186-20220211211725764-329743928.png" ></p>
<hr>
<p>选举后数据如何同步?</p>
<p data-tool="mdnice编辑器">那实际上Zookeeper在选举之后,Follower和Observer(统称为Learner)就会去向Leader注册,然后就会开始数据同步的过程。</p>
<p data-tool="mdnice编辑器">数据同步包含3个主要值和4种形式。</p>
<ul>
<li data-tool="mdnice编辑器">PeerLastZxid:Learner服务器最后处理的ZXID</li>
<li data-tool="mdnice编辑器">minCommittedLog:Leader提议缓存队列中最小ZXID</li>
<li data-tool="mdnice编辑器">maxCommittedLog:Leader提议缓存队列中最大ZXID</li>






</ul>
<p>同步策略:</p>
<ul>
<li><span style="color: rgba(51, 204, 204, 1)">直接差异化同步</span> (DIFF同步):如果PeerLastZxid在minCommittedLog和maxCommittedLog之间,那么则说明Learner服务器还没有完全同步最新的数据。<ol>
<li style="margin-top: 0; margin-right: 0; margin-bottom: 0; padding-top: 0; padding-right: 0; padding-bottom: 0; outline: 0; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important">首先Leader向Learner发送DIFF指令,代表开始差异化同步,然后把差异数据(从PeerLastZxid到maxCommittedLog之间的数据)提议proposal发送给Learner</li>
<li style="margin-top: 0; margin-right: 0; margin-bottom: 0; padding-top: 0; padding-right: 0; padding-bottom: 0; outline: 0; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important">发送完成之后发送一个NEWLEADER命令给Learner,同时Learner返回ACK表示已经完成了同步</li>
<li style="margin-top: 0; margin-right: 0; margin-bottom: 0; padding-top: 0; padding-right: 0; padding-bottom: 0; outline: 0; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important">接着等待集群中过半的Learner响应了ACK之后,就发送一个UPTODATE命令,Learner返回ACK,同步流程结束</li>




</ol></li>
<li style="text-align: justify"><span style="color: rgba(51, 204, 204, 1)">先回滚再差异化同步</span>(Trunc+DIFF同步):特殊场景:<span style="font-family: -apple-system-font, BlinkMacSystemFont, &quot;Helvetica Neue&quot;, &quot;PingFang SC&quot;, &quot;Hiragino Sans GB&quot;, &quot;Microsoft YaHei UI&quot;, &quot;Microsoft YaHei&quot;, Arial, sans-serif"><span style="letter-spacing: 2px">如果Leader刚生成一个proposal,还没有来得及发送出去,此时Leader宕机,重新选举之后作为Follower,但是新的Leader没有这个proposal数据</span><span style="font-size: 16px; letter-spacing: 2px">。</span></span>
<ul>
<li style="text-align: justify"><span style="font-family: -apple-system-font, BlinkMacSystemFont, &quot;Helvetica Neue&quot;, &quot;PingFang SC&quot;, &quot;Hiragino Sans GB&quot;, &quot;Microsoft YaHei UI&quot;, &quot;Microsoft YaHei&quot;, Arial, sans-serif"><span style="letter-spacing: 2px">举个栗子:</span></span>假设现在的Leader是A,minCommittedLog=1,maxCommittedLog=3,刚好生成的一个proposal的ZXID=4,然后挂了。重新选举出来的Leader是B,B之后又处理了2个提议,然后minCommittedLog=1,maxCommittedLog=5。这时候A的PeerLastZxid=4,在(1,5)之间。那么这一条只存在于A的提议怎么处理?</li>
<li style="text-align: justify">
<p data-tool="mdnice编辑器">A要进行事务回滚,相当于抛弃这条数据,并且回滚到最接近于PeerLastZxid的事务,对于A来说,也就是PeerLastZxid=3。流程和DIFF一致,只是会先发送一个TRUNC命令,然后再执行差异化DIFF同步。</p>




</li>




</ul>




</li>
<li><span style="color: rgba(51, 204, 204, 1)">仅回滚同步</span>(TRUNC同步):
<ul>
<li data-tool="mdnice编辑器">针对PeerLastZxid大于maxCommittedLog的场景,流程和上述一致,事务将会被回滚到maxCommittedLog的记录。</li>
<li data-tool="mdnice编辑器">这个其实就更简单了,也就是你可以认为TRUNC+DIFF中的例子,新的Leader B没有处理提议,所以B中minCommittedLog=1,maxCommittedLog=3。</li>
<li data-tool="mdnice编辑器">所以A的PeerLastZxid=4就会大于maxCommittedLog了,也就是A只需要回滚就行了,不需要执行差异化同步DIFF了。</li>




</ul>




</li>
<li><span style="color: rgba(51, 204, 204, 1)">全量同步</span> (SNAP同步):
<ul>
<li>
<p data-tool="mdnice编辑器">适用于两个场景:</p>
<ol class="list-paddingleft-2" data-tool="mdnice编辑器">
<li>PeerLastZxid小于minCommittedLog</li>
<li>Leader服务器上没有提议缓存队列,并且PeerLastZxid不等于Leader的最大ZXID</li>




</ol></li>
<li>这两种场景下,Leader将会发送SNAP命令,把全量的数据都发送给Learner进行同步。</li>




</ul>




</li>




</ul>
<hr>
<p data-tool="mdnice编辑器">有可能会出现数据不一致的问题吗?</p>
<p data-tool="mdnice编辑器">还是会存在的,我们可以分成3个场景来描述这个问题。</p>
<ul>
<li data-tool="mdnice编辑器"><span style="color: rgba(51, 204, 204, 1)">查询不一致</span><strong><strong>:</strong></strong>
<ul>
<li data-tool="mdnice编辑器">因为Zookeeper是过半成功即代表成功,假设我们有5个节点,如果123节点写入成功,如果这时候请求访问到4或者5节点,那么有可能读取不到数据,因为可能数据还没有同步到4、5节点中,也可以认为这算是数据不一致的问题。</li>
<li data-tool="mdnice编辑器">解决方案可以在读取前使用sync命令。</li>


</ul>


</li>
<li data-tool="mdnice编辑器"><span style="color: rgba(51, 204, 204, 1)">leader未发送proposal宕机</span><strong>:</strong>
<ul>
<li data-tool="mdnice编辑器">
<p data-tool="mdnice编辑器">这也就是数据同步说过的问题。leader刚生成一个proposal,还没有来得及发送出去,此时leader宕机,重新选举之后作为follower,但是新的leader没有这个proposal。</p>


</li>
<li data-tool="mdnice编辑器">
<p data-tool="mdnice编辑器">这种场景下的日志将会被丢弃。</p>


</li>


</ul>


</li>
<li data-tool="mdnice编辑器"><span style="color: rgba(51, 204, 204, 1)">leader发送proposal成功,发送commit前宕机</span><strong>:</strong>
<ul>
<li data-tool="mdnice编辑器">如果发送proposal成功了,但是在将要发送commit命令前宕机了,如果重新进行选举,还是会选择zxid最大的节点作为leader,因此,这个日志并不会被丢弃,会在选举出leader之后重新同步到其他节点当中。<strong><br></strong></li>


</ul>


</li>


</ul>
<blockquote><span style="color: rgba(0, 0, 0, 1)"><strong>四.ZK其他小问题</strong></span></blockquote>
<p>zookeeper 是如何保证事务的顺序一致性的?</p>
<ul>
<li>使用<span style="color: rgba(51, 204, 204, 1)">zxid</span>来保证顺序性。</li>


</ul>
<hr>
<p>集群最少要几台机器,集群规则是怎样的?集群中有 3 台服务器,其中一个节点宕机,这个时候 Zookeeper 还可以使用吗?</p>
<ul>
<li>集群规则为 <span style="color: rgba(51, 204, 204, 1)">2N+1</span>&nbsp;(奇数)台,N&gt;0,即 3 台。可以继续使用,单数服务器只要没超过一半的服务器宕机就可以继续使用。</li>


</ul>
<hr>
<p>说几个 zookeeper 常用的命令:</p>
<ul>
<li>ls path:查看当前 znode 的子节点</li>
<li>get path:获取节点的值</li>
<li>set:设置节点的值</li>
<li> create,delete:创建/删除节点</li>


</ul>
<hr>
<p>会话Session:</p>
<ul>
<li>会话自然就是指Zookeeper客户端和服务端之间的通信,他们使用TCP长连接的方式保持通信,通常,肯定会有<span style="color: rgba(51, 204, 204, 1)">心跳检测</span>的机制,同时他可以接受来自服务器的Watch事件通知。</li>


</ul>
<p>&nbsp;</p>
<p>寄语:<span style="color: rgba(51, 204, 204, 1)">平静的湖面酝酿不出精悍的水手,安逸的环境创造不出时代的伟人</span></p>
回复

使用道具 举报

懒得打字嘛,点击右侧快捷回复 【右侧内容,后台自定义】
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|飞雪团队

GMT+8, 2024-11-24 01:11 , Processed in 0.225569 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表